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The desirable features of algorithms for the direct, implicit large-eddy, and large-
eddy numerical simulation of compressible turbulent mixing are discussed. Issues 
specific to turbulence and mixing induced by interfacial instabilities are briefly reviewed. 
A high-resolution, Eulerian numerical algorithm for compressible turbulent mixing 
simulations currently in use at the Lawrence Livermore National Laboratory (LLNL) is 
described−the weighted essentially non-oscillatory (WENO) method. The method is 
applied to the two-dimensional reshocked Richtmyer-Meshkov instability using third-, 
fifth-, and ninth-order reconstruction, and the dependence of quantities on both the grid 
resolution and order of spatial flux reconstruction is investigated. It is shown that certain 
large-scale quantities exhibit little sensitivity to both the resolution and order prior to 
reshock, but exhibit much greater sensitivity following reshock. The dependence of 
various quantities determined by the entire range of resolved scales (such as energy 
spectra and mixing characteristics) on the resolution and order is also discussed. It is 
concluded that lower-order reconstruction and lower resolution result in excessively 
large numerical dissipation. The implications of these results for simulating experiments 
and assessing turbulent transport and mixing models are briefly discussed. 

Introduction 
The numerical simulation of turbulent mixing induced by hydrodynamic interfacial 

(i.e., Rayleigh-Taylor and Richtmyer-Meshkov) instabilities presents a number of 
challenges with respect to both physics and numerical algorithms. These challenges must 
be addressed in order to perform realistic simulations of experiments conducted in 
parameter regimes of physical interest, as well as to generate datasets that can be used for 
turbulent transport and mixing model assessment and development. Such numerical 
simulations have a role in diverse applications including astrophysics (particularly 
supernovae), inertial confinement fusion, and fundamental studies of buoyancy- and 
acceleration-driven, inhomogeneous turbulent flows. To a large extent, the flow physics 
of interest dictates the characteristics that must be satisfied by the numerical method 
used. In addition, it is essential to understand how the numerical method used affects the 
flow field: for numerical methods designed to solve the non-dissipative compressible 
fluid dynamics equations (i.e., the Euler equations), this typically entails grid 
convergence studies and various verification and validation studies involving 
comparisons to analytical or semi-analytical solutions, or to available experimental data.  
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The organization of this contribution is as follows. First, the physical and numerical 
issues pertinent to simulating compressible turbulent mixing will be succinctly reviewed 
to suggest a set of desirable features that a numerical algorithm should possess in order to 
accurately simulate turbulent mixing. Second, numerical methods and approaches used to 
simulate such flows will be briefly reviewed, together with more recent approaches that 
have promise. Third, the weighted essentially non-oscillatory (WENO) method currently 
in use at LLNL will be briefly described. Fourth, the WENO method is applied to the 
two-dimensional Richtmyer-Meshkov instability with reshock using different grid 
resolutions and orders of spatial reconstruction; several quantities characterizing the 
mixing and turbulent properties of the flow are compared from these simulations. Finally, 
the results of the numerical experiments are summarized and conclusions are drawn. 

Physical, Numerical, and Theoretical Considerations Regarding the Simulation of 
Compressible Turbulent Mixing 

When taken together, the physical and numerical considerations that arise in 
simulating compressible turbulent mixing limit the possible candidate numerical 
algorithms/methods that should be used for turbulent mixing simulations. 

Physical Considerations 
With regard to the flow physics, the issues that must be considered include the 

following. First, at very large Reynolds numbers, the range of spatial scales that must be 
resolved is too large to allow direct numerical simulation using molecular dissipation and 
diffusion coefficients that are realistic. Second, in the presence of shocks and material 
discontinuities, it is not strictly possible to directly simulate the flow due to the inability 
to fully resolve shocks. Third, these flows are initiated from small-scale initial fields that 
are computationally expensive to resolve. Fourth, these flows are typically transitional, 
i.e., develop from quiescent initial conditions through a linear and nonlinear growth stage 
into a fully turbulent state. Fifth, the anisotropic flow consists of vortical structures of 
different sizes resulting from a complex interaction between buoyancy and/or baroclinic 
and shear effects. These issues also complicate the development of appropriate models 
for representing transport and mixing, i.e., both subgrid-scale (for large-eddy simulation 
with explicit subgrid modeling) and Reynolds-averaged Navier-Stokes (RANS) models. 

Numerical Considerations 
With regard to the numerical algorithms, the issues that must be considered include 

the following. First, the numerical method must be able to represent propagating shocks 
and associated waves, as well as resolve any material discontinuities. Second, the 
numerical algorithm must be conservative and computationally robust over a wide range 
of simulation parameters. Third, the algorithm must be sufficiently accurate in both space 
and time to resolve all of the scales present in the flow over the simulation time with 
minimal dissipative and dispersive error. Fourth, the multi-component character of the 
mixing fluids must be approximated mathematically and discretized numerically (there is 
no unique description of a multi-component or multi-species flow). 



Proceedings from the 5LC 2005 

Schilling, O. 
 

3 

Theoretical Considerations 
A number of theoretical considerations regarding shocks and, more generally, 

discontinuities and hyperbolic partial differential equations are relevant to the present 
discussion. For example, it is well-known that the convergence rate of an nth-order finite-
difference approximation to the solution of hyperbolic partial differential equations may 
give worse than nth-order convergence if the (n+1)st derivatives of the solution are not 
piecewise continuous (Orszag and Jayne, 1974). Furthermore, when the solution is not 
globally smooth, a fixed stencil interpolation of second or higher order is necessarily 
oscillatory near a discontinuity. Such oscillations can be suppressed using filtering 
(Majda et al., 1978; Mock and Lax, 1978; Engquist et al., 1989; Vandeven, 1991; Don, 
1994; Gottlieb and Hesthaven, 2001). The degradation of the solution downstream from 
the shock is due to the propagation of errors with outgoing characteristics, as shown 
numerically using the ENO method (Donat and Osher, 1990; Donat, 1994). For a linear 
problem, high-order (or high-resolution) methods give high-order results for moments, so 
that accurate pointwise values can be reconstructed in smooth regions. For a nonlinear 
problem, the accuracy is reduced to first-order upon shock passage (Majda and Osher, 
1977; Engquist  and Sjögreen, 1998). It should be noted, however, that methods have 
been developed in an attempt to mollify these errors: a matched asymptotic expansion 
analysis was used to modify the artificial viscosity in one- and two-dimensional shock-
capturing schemes for hyperbolic equations with a source term to raise the order of 
accuracy from first-order downstream of shocks to second-order (Kreiss et al., 2001). 
This analysis was extended to the case of time-dependent shock calculations with a 
modified equation containing a matrix-valued viscosity coefficient (Siklosi and Kreiss, 
2003). The issue of shock-induced numerical error is common to all numerical methods, 
and is not addressed further in the present work. 

Brief Review of Numerical Methods for Simulating Compressible Turbulent Mixing 
The summary of numerical methods below focuses on methods that have been 

applied to simulations of mixing induced by shocks. Each of these methods have relative 
advantages and disadvantages. The review given here is not exhaustive and, in particular, 
omits a description of adaptive mesh refinement (AMR), which is discussed elsewhere in 
these Proceedings (Lomov et al., 2005). 

Direct Numerical, Implicit Large-Eddy, and Large-Eddy Simulation 
Various numerical methods and approaches for simulating compressible turbulent 

mixing are briefly summarized here. Broadly, these methods can be categorized as direct 
numerical simulations (DNS), implicit large-eddy simulations (ILES), and large-eddy 
simulations (LES). 

In a direct numerical simulation (DNS), molecular dissipation and diffusion terms are 
explicitly included, and all spatio-temporal scales are resolved, by definition (Pope, 
2000). In principle, if the equations solved adequately describe the flow of interest, DNS 
provides the most physically accurate description of the flow dynamics. No modeling of 
terms in the equations is required. In practice, DNS is limited to Reynolds numbers, 
Schmidt numbers, and other parameters that are well below (or above) the values that are 
relevant to flows of physical interest. The resolution requirements for DNS of turbulent 
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mixing and of reacting flows are much more stringent than for homogeneous turbulence. 
DNS is limited to mixing induced by very weak shocks. 

In a monotone-integrated large-eddy simulation (MILES) or implicit large-eddy 
simulation (ILES), the non-dissipative fluid dynamics equations are solved using a shock-
capturing method with the fields regarded as implicitly filtered by the underlying 
numerical algorithm (e.g., a top-hat filter in a finite-volume method), and with an implicit 
subgrid-scale model provided by the intrinsic numerical dissipation arising from 
discretization errors or the nonlinear flux-limiters (Boris et al., 1992; Garnier et al., 1999; 
Margolin and Rider, 2002, 2005; Drikakis, 2002, 2003; Grinstein et al., 2005). An 
obvious question that arises is whether this intrinsic dissipation is an adequate 
representation of physical dissipation, i.e., what is the relationship between the implicit 
subgrid model and an explicit one? This question has been partially addressed by 
analyzing the discretization error for a particular finite-volume shock-capturing method 
using the modified equation method and showing that this error can be cast in the form of 
a conventional artificial viscosity (Margolin and Rider, 2005). Approximate and direct 
deconvolution methods (Adams and Stolz, 2002; Stolz and Adams, 2003) have also been 
applied to shock-turbulence interaction. 

In a large-eddy simulation (LES), the filtered fluid dynamics equations are solved, 
with unclosed subgrid-scale terms arising from the filtering modeled using explicit 
subgrid models (Pope, 2000; Sagaut, 2002). LES of turbulent mixing driven by buoyancy 
or shocks encounters several important difficulties. Aside from the conceptual issues of 
what the large-eddy equations actually mean, additional conceptual issues relating to non-
periodic boundaries and complex flow geometries, flow transients (shocks and material 
discontinuities), and accounting for the baroclinic and multi-species diffusion effects that 
drive the turbulence and mixing, arise. In most LES formulations, it is not possible to 
define Reynolds, Schmidt, and other characteristic parameters of the flow. The filtered 
structure function model implemented in a second-order, central finite-volume method 
with a modified, local Jameson artificial viscosity has been used in LES of shock-
turbulence interaction (Ducros et al., 1999). LES of shock/homogeneous turbulence 
interaction were performed with the Smagorinsky model, the mixed model, the dynamic 
Smagorinsky model, and the dynamic mixed model (Garnier et al., 2002a). LES of 
shock/boundary layer interaction were performed with the mixed-scale model (Sagaut, 
2001), a nonlinear fifth-order WENO filter, a fourth-order central difference scheme, and 
a third-order TVD Runge-Kutta time-evolution scheme (Garnier et al., 2002b). These 
applications do not, however, entail fluid mixing. 

Filtered Spectral, Reconstruction-Evolution, and Compact Methods 
Filtered spectral and spectral multi-domain methods were primarily developed for 

simulations of supersonic turbulent combustion (Don and Quillen, 1995; Don et al., 
2005). Such methods employ high-order filtering to reduce or eliminate Gibbs 
oscillations in spectral simulations containing propagating shocks and material 
discontinuities. Thus, excessively dissipative upwinding is avoided, but at the expense of 
explicit filtering (which acts dissipatively) to mitigate oscillations that would otherwise 
contaminate the flow field and violate physical constraints such as mass fractions 
bounded between zero and unity. Moreover, global filtering introduces dissipation 
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everywhere in the flow field. Local, adaptive filtering addresses this, however is not 
robust for complex, multi-dimensional flows. While filtered spectral methods have shown 
great promise for flows with moderate strength shocks, they are not generally robust for 
flows initiated by large Mach number shocks. 

Reconstruction-evolution or shock-capturing methods (Laney, 1998; LeVeque, 2002) 
are the methods traditionally used to simulate compressible turbulent mixing. These 
upwind methods include the Godunov and higher-order Godunov methods, the Van Leer 
method, the piecewise-parabolic method (PPM), essentially non-oscillatory (ENO) 
methods, and weighted essentially non-oscillatory (WENO) methods. Reconstruction-
evolution methods are based on: (1) a spatial reconstruction of the solution φ(x,tn) using a 
reconstruction algorithm, which may entail solution averaging and limiting, and; (2) 
evolution of the solution from tn to tn+1 using wave- or characteristic-based methods. Such 
methods are also generically known as Godunov, MUSCL, and flux-difference splitting 
methods. These methods treat the flux using either a Riemann solver or by flux-splitting. 
Many modern reconstruction-evolution methods reconstruct either the numerical flux at 
cell edges in the pth characteristic field or the conserved variables pointwise at the cell 
edges xi±1/2. These methods are robust and can be applied to very large Mach number 
shocks. However, their nonlinear implicit dissipation mechanisms require very high 
spatial resolutions to minimize numerical diffusion. 

Central and upwind compact finite-difference and finite-volume methods are 
adaptations of traditional compact finite-difference and finite-volume schemes (Deng and 
Zhang, 2000; Wang & Huang 2002; Sengupta et al., 2004, 2005; Broeckhoven et al., 
2004). These more recently developed methods are also robust, but are also dissipative 
and have not been applied to multi-dimensional flows. 

Hybrid Methods 
The recognition that many multi-scale flows contain regions with different flow 

dynamics and therefore, different numerical requirements, has engendered the 
development of hybrid algorithms, in which the advantageous features of each constituent 
algorithm are applied to different flow regions or directions. These hybrid methods 
typically combine (formally) high-order/high-resolution upwind and non-upwind 
algorithms. Recently developed hybrid methods include a spectral/compact finite-
difference method (Cook and Dimotakis, 2001), a hybrid compact-WENO method 
(Pirozzoli, 2002; Ren et al., 2003), an optimized WENO method (Ponziani et al., 2003), a 
hybrid tuned central-difference/WENO method (Hill and Pullin, 2004), a WENO/central-
difference method (Schilling and Latini, 2004), and a WENO/spectral multi-domain 
method (Don, 2005). An artificial hyperviscosity shock-capturing method (Cook and 
Cabot, 2005) is further described elsewhere in these Proceedings (Cook, 2005). 

Application of the Weighted Essentially Non-Oscillatory (WENO) Method to Two-
Dimensional Richtmyer-Meshkov Instability-Generated Flow 

Presented here are selected results from a comprehensive investigation of mixing in 
two-dimensional Richtmyer-Meshkov instability with reshock (Schilling and Latini, 
2005a). These can be regarded as numerical experiments indirectly investigating the 
dissipation properties of the WENO method. 
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Summary of the WENO Method 
The present implementation of the flux-averaged WENO method uses local Lax-
Friedrichs flux-splitting and a characteristic decomposition of the variables and fluxes 
(see Schilling and Latini, 2004 and references therein). At a given timestep, the numerical 
algorithm can be summarized as follows: 
 

(1) compute the average state 
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(7) obtain the fluxes in the y- and z-directions (i,j+1/2,k) and (i,j,k+1/2) 
accordingly, and; 

(8) advance the solution one timestep using the third-order TVD Runge-Kutta 
scheme, and compute a new timestep based on the CFL criterion. 

In the present parallel code, the one-, two-, or three-dimensional Euler equations can 
be solved, together with the mass fraction evolution equation. 

Two-Dimensional Richtmyer-Meshkov Instability-Generated Flow with Reshock 
The WENO method using a third-order total-variation diminishing Runge-Kutta time-

evolution scheme is applied here to the single-mode Richtmyer-Meshkov instability with 
reshock in two spatial dimensions. The initial conditions and computational domain for 
the simulations are modeled after the Collins and Jacobs (2002) single-mode, Mach 1.21 
air(acetone)/SF6 shock tube experiment. The boundary conditions were: (1) periodic in 
the spanwise direction corresponding to the cross-section of the test section; (2) outflow 
at the entrance of the test section in the streamwise direction, and; (3) reflecting at the 
end wall of the test section in the streamwise direction. Simulations were performed 
using the third-, fifth-, and ninth-order WENO method with spatial resolutions 
corresponding to a uniform grid with 128, 256, and 512 points per initial perturbation 
wavelength (coarse, medium, and fine grids, respectively). The perturbation wavelength 
and amplitude were λ = 5.93 cm and a0 = 0.2 cm, respectively. The computational 
domain consisted of only the test section of square cross-section 8.9 cm and length 75 cm. 
To specify a single value of the adiabatic exponent, a mixture of 50% air(acetone) and 
50% SF6 by volume was assumed, yielding γ = 1.24815. 

As shown in Fig. 1, the perturbation amplitude a(t) from the simulation is in generally 
very good agreement with the experimental data from Collins and Jacobs (2002) prior to 
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reshock; following reshock, the discrepancy is due to the influence of the rarefaction 
wave present in the experiment, but not in the simulation. The amplitude is defined as 
half of the mixing layer width h(t), which is numerically determined by a 1-99% criterion 
in the mass fraction. 

 

 
Figure 1. Perturbation amplitude a(t) from the fifth-order WENO simulation on the 
medium resolution grid compared with the experimental data points. 

 

Sensitivity of Quantities to the Order of Reconstruction and Grid Resolution 
The sensitivity of various quantities to the formal order of flux reconstruction and to 

the grid resolution is investigated here. Figure 2 shows the mixing layer widths obtained 
using different orders and grid resolutions. With the exception of the third-order result on 
the coarse grid, the widths from the remaining simulations are in generally good 
agreement prior to reshock at ~ 6.5 ms; the widths are also in reasonable agreement for a 
short time following reshock. However, as the flow continues to develop after the 
reflected shock has moved away from the evolving layer, an increasingly large difference 
is observed among the widths. The widths from the ninth-order simulations are the largest 
and also grow fastest. The third-order widths differ significantly among the grid 
resolutions. The effects of wave interactions with the mixing layer are damped in the 
third-order results, but are present in the fifth- and ninth-order widths. Prior to reshock, 
all of the widths are larger than the ninth-order, fine grid width, and are within < 10% of 
one another. Following reshock, the widths are smaller than the ninth-order, fine grid 
width, consistent with the larger numerical dissipation in the lower-order, coarser grid 
simulations during the quasi-decay phase. The ninth-order widths appear to be nearly 
converged, even to late times. 

Figure 3 shows an example of a quantity characterizing the global mixing properties, 
defined as follows. Suppose that the two fluids undergo a fast kinetic reaction, so that in 
terms of the mole fraction X the amount of product produced is Xp(x,y,t) = X/Xs for X ≤ Xs 
and Xp(x,y,t) = (1 - X)/(1 - Xs) for X > Xs with Xs = 1/2 (representing equal mole fractions 
of the “reactants”) (Koochesfahani and Dimotakis, 1986). Then the profile of the 
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averaged product mole fraction ]1,0[),( !txX p  provides information on how well 
mixed the two reactants are (angle brackets denote an average over the periodic y-
direction). Then the total chemical product is dxXtP

b

s

a

a
pt !=)( , where ab and as are the 

bubble and spike amplitudes, respectively. Before reshock, Pt increases, indicating an 
increase in mixing. During reshock, the mixing layer is compressed, inducing additional 
mixing as measured by Pt. Following reshock, Pt increases rapidly, indicating 
significantly increased mixing. It is apparent that Pt is quite sensitive to the order and grid 
resolution. 

 

 
Figure 2. Comparison of the mixing layer width obtained from the third-, fifth-, and 
ninth-order WENO simulation on the fine, medium, and coarse grids. 

 

Figure 3. Time-evolution of the production fraction Pt  obtained from the third-, 
fifth-, and ninth-order WENO simulation on the fine, medium, and coarse grids. 

 
Figure 4 shows the one-dimensional turbulent kinetic energy, turbulent enstrophy, 

and density variance spectra obtained from the simulations with different orders and grid 
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resolutions at three different times (before and after reshock, and at late time). The 
turbulent kinetic energy spectrum is the least sensitive to the order and resolution. The 
large-scale (small k) kinetic energy spectra are in good agreement among the simulations, 
with most of the differences appearing in the intermediate scales. The turbulent enstrophy 
spectrum is the most sensitive to the order and resolution. As in the case of the turbulent 
kinetic energy spectrum, reshock primarily amplifies the turbulent enstrophy spectrum 
but does not change its shape. The spectra differ both in the large and smaller scales, with 
a very wide spread among the results obtained using different reconstruction orders and 
resolutions. The third- and fifth-order spectra are highly damped and decay rapidly with 
increasing wavenumber. The higher order, higher resolution simulations capture more 
small-scale vortical structure than the lower order, lower resolution simulations. The 
behavior of the density variance spectrum is qualitatively similar to that of the kinetic 
energy spectrum, and clearly shows that the spectra computed from the less dissipative 
algorithms extend further in wavenumber before dissipation begins to dominate. 

 

 
Figure 4. Turbulent kinetic energy (top row), turbulent enstrophy (middle row), and 
density variance (bottom row) spectra obtained from the third-, fifth-, and ninth-
order WENO simulation on the fine, medium, and coarse grids. 

Figures 5 and 6 show a comparison of the density field obtained from the third-, fifth- 
and ninth-order WENO simulations on the coarse, medium, and fine resolution grids at    
t = 6, 7, and 18 ms. Prior to reshock at t = 6 ms, the interface separating the gases is 

t = 6 ms t = 7 ms t = 18 ms 
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highly diffused in the third-order simulations, which suppresses the roll-up of the 
interface and inhibits the formation of small-scale structure within the roll-ups. The 
ninth-order simulations show the most structure, particularly inside the roll-ups. 
Following reshock at t = 7 ms, the ninth-order, medium and fine grid simulations begin to 
show symmetry breaking, while the third- and fifth-order simulations continue to 
preserve symmetry. Many more fine-scale structures appear in the ninth-order 
simulations at all resolutions, compared to the fifth- and third-order simulations. The 
differences among these simulations are even more pronounced at late time, t = 18 ms, 
when the flow is in a quasi-decay phase (i.e., decaying but weakly influenced by waves). 
The third-order simulations continue to preserve symmetry, with large-scale structures 
dominating the flow. The coarse grid density shows a large degree of damping due to 
numerical dissipation. The ninth-order simulations exhibit the most asymmetry, disorder, 
and fine-scale structure qualitatively similar to that observed in shock tube experiments. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Comparison of the density field at time t = 6 ms (upper panel) and t = 7 ms 
(lower panel) obtained from the ninth- (top row), fifth- (middle row), and third-order 
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(bottom row) WENO simulations on the coarse (left column), medium (middle 
column), and fine (right column) grids. 

 
 
 
 
 
 
 
 
 
 
Figure 6. Comparison of the density field at time t =18 ms obtained from the ninth- 
(top row), fifth- (middle row), and third-order (bottom row) WENO simulations on 
the coarse (left column), medium (middle column), and fine (right column) grids. 

Summary and Implications of the Results 
The present investigation compared the results obtained from WENO shock-capturing 
simulations of the two-dimensional Richtmyer-Meshkov instability with reshock using 
different orders of flux reconstruction and grid resolution. The simulations were 
otherwise identical in all other respects. This systematic study quantitatively and 
qualitatively showed that lower order reconstruction and grid resolution yield both large- 
and smaller scale quantities that are strongly affected by the intrinsic numerical 
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dissipation present in the algorithm; this is particularly true at late times, when the flow is 
in a quasi-decaying state. For example, at late times, the mixing layer amplitudes differ 
considerably among the simulations with different orders and resolutions, with the ninth-
order results showing evidence of convergence. Quantities characteristic of the mixing 
(e.g., production fractions) and of the distribution of energy fluctuations in various fields 
(velocity, vorticity, and density) also showed considerable differences as a function of 
order and resolution. Consequently, numerical dissipation in low-order simulations 
strongly damps fluctuations that affect all scales of the flow, and therefore, has 
significant implications for simulating turbulent mixing flows driven by baroclinic effects 
that affect the evolution of the vorticity field. While the dynamics of the flow evolution 
are expected to differ in three dimensions, the present study affords higher resolution per 
initial perturbation wavelength than is feasible in three dimensions. In addition, the 
numerical effects can be investigated in the absence of the effects of vortex stretching 
present in three-dimensional flow. It is expected that vortex stretching significantly 
affects mixing in three dimensions (Schilling and Latini, 2005b). 

The results of this study also strongly suggest that higher-order methods must be used 
for LES with explicit subgrid-scale modeling, as the statistical effects represented by 
such models on the larger scale evolution will be significantly affected by the intrinsic 
numerical dissipation in the underlying hydrodynamic algorithm. This also has 
consequences for a priori turbulence model assessment using data obtained from high-
resolution MILES or ILES. This study also shows that, in general, numerical 
‘convergence’ must be assessed with respect to a range of quantities representative of the 
flow physics at all spatial scales. 

Conclusions 
The numerical experiments presented and discussed here suggest that higher order 

WENO methods (and hybridizations thereof) have great promise for the numerical 
simulation of compressible turbulent mixing induced by shocks. While all numerical 
methods are subject to O(1) errors as a consequence of the passage of a shock through the 
domain, it is clear that early and late-time quantities are highly sensitive to the formal (or 
design) order of accuracy of the spatial discretization of the semi-discrete evolution 
equations. These conclusions are also consistent with the results of three-dimensional, 
fifth-, ninth-, and eleventh-order WENO simulations of the Vetter and Sturtevant (1995) 
Mach 1.5 air/SF6 shock tube experiments (Schilling and Latini, 2005b). 
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